Spetsteknik för svaga hjärtan på Hallands sjukhus Varberg

Fingerfärdighet, hög kompetens, en vilja att utveckla och ett bra arbete i teamet. Det är förklaringen till att Hallands sjukhus Varberg blev näst först i Sverige med en helt ny behandling för personer med svår hjärtsjukdom.

Det handlar om His bundle pacing – ett nytt sätt att ansluta pacemakern till hjärtat. En spetsteknik som kan ge ett svårt sjukt hjärta bättre hjälp att göra sitt jobb. Cecilia Rorsman, kardiolog på Hallands sjukhus, var den som genomförde det första halländska ingreppet med den nya metoden, som tidigare bara utförts på Skånes universitetssjukhus i Lund. Hon berättar:

– His-bunten är en liten nervcentral i hjärtat, ett område på bara några millimeter, där signalerna som normalt styr hjärtats arbete kommer in. När vi med en pacemaker ger impulser på andra sätt, till exempel genom en elektrod i ena kammarväggen, så blir inte hjärtats arbete optimalt. Det blir det däremot när ”kopplingen” görs i His-bunten. Då kommer signalerna där de brukar och hjärtats sätt att arbeta blir naturligt. 

Hela Halland
Den här nya metoden kommer att komma till nytta för hjärtpatienter från hela Halland. Varbergs sjukhus Halland har nämligen ansvar för arytmivården för hela Halland och ligger långt framme. Så var man till exempel första länsdelssjukhus i Sverige som opererade in en defibrillator, och man har också lagt in sladdlös pacemaker.

Vad är då utmaningen med den nya behandlingen?

– Först gäller det ju att hitta exakt rätt ställe. Det handlar om millimeter. Det gör vi genom att mäta de elektriska strömmarna med EKG inne i hjärtat. Sedan handlar det om att få elektroden att fastna där den ska, och det kan vi göra med nyutvecklad utrustning.

Vissa patienter
Patienten som nyligen fick den här nya behandlingen mår väl, och kommer alltså att följas av fler. Torbjörn Vik, biträdande verksamhetschef på medicinkliniken, berättar mer:

– Det är vissa grupper av hjärtpatienter som har särskilt god nytta av den här metoden. Det handlar om patienter med ett hjärta som behöver kontinuerlig stimulans av en pacemaker och där muskelmassan är försvagad. För dem är det extra viktigt att ta vara på den pumpkraft som hjärtat har, och när signalerna leds på det nya, naturliga sättet kan också hjärtat arbeta bättre.

Torbjörn Vik är glad och stolt över att Hallands sjukhus Varberg nu kan tillämpa den nya behandlingen.

– Det är fantastiskt roligt. Vi har en hög klass på arytmivården här och väldigt duktiga arytmiläkare. Cecilia är tekniskt väldigt skicklig och snabb på att ta till sig nya forskningsrön. Hon har också ett väl utvecklat kontaktnät på Sveriges främsta center för arytmivård.

– Det handlar också om att ha ett väl fungerande teamarbete med en stabil sjuksköterskeverksamhet som kan fånga upp rätt patienter för olika behandlingar och sedan följa dem efter behandlingen. Det har vi i Varberg.

Kort om arytmi
Arytmi är samlingsnamnet för tillstånd där hjärtats rytm störs. Det kan antingen handla om att hjärtat slår för långsamt, för snabbt eller oregelbundet. Det kan vara ofarligt och inte ge några symtom eller vara ett livshotande tillstånd.

Pacemakern, som genom elektriska impulser hjälper hjärtat att hålla rytmen, är en svensk uppfinning som kom i slutet av 1950-talet och som därefter utvecklats allt mer. His bundle pacing är det senaste steget i utvecklingen av pacemaker-tekniken.

Publicerad 28 mars 2019 kl 13:51 på http://www.regionhalland.se/om-region-halland/nyheter/spetsteknik-for-svaga-hjartan-pa-hallands-sjukhus-varberg1/

Lärandemål för arbetsområdet ”designa, konstruera och bygga robotfordon”

Kunskaper, lärandemål och bedömningsaspekter för arbetsområdet designa, konstruera och bygga robotfordon/självkörande fordon

  • Komma på idéer, främja kreativitet, skapa kreativa miljöer, utforska, göra urval och motivera och argumentera för sina val.
  • Skissa
  • Måttsatt ritning, 2D med flera vyer med papper och penna. Skala, skalenlig, rätt proportioner.
  • Ritning i 3D CAD, digitala verktyg, Tinkercad. Skala, skalenlig, rätt proportioner och rätt dimensioner och rätt mått.
  • Bygga skalenlig modell eller prototyp i valfritt material.
  • Välja ut vilken av klassens 3D-modeller som vi ska använda som 3D-printad referensmodell för fordons-chassit. Eleverna undersöker varandras 3D CAD-modeller och väljer ut den som är mest lik det verkliga chassit mått och utseendemässigt. Den ska sedan kunna användas som fysisk designmodell att utgå ifrån när man bygger egen kaross.
  • Jämföra och värdera sin egen och andras arbete.
  • Materialkunskap. Olika materials egenskaper, hållfasthet, hårdhet, densitet, förhållandet mellan vikt och volym, styvhet, vridstyvhet, böjbarhet, formbarhet, brottgräns, bearbetningsmöjligheter/metoder, formstabilitet, hållbarhet (finns flera aspekter), miljövänlighet, källsortering och återvinning, påverkan på miljö, natur, djur och människor.
  • Materialbearbetning, hantera olika verktyg och redskap på ett säkert och ändamålsenligt sätt.
  • Elektronik, batterier, transistorer, elmotorer, lysdioder.
  • Koppla in och styra extern elektronik från programmerbara Micro controllers, micro:bit.
  • Programmering, blockprogrammering med micro:bit.
  • Använda ämnesspecifika beskrivningar med lämpliga ord och begrepp för att redogöra för, förklara och beskriva sina idéer, tankar, förslag, överväganden, handlingsalternativ, val och tillvägagångssätt.
  • Sammansättning och sammanfogningsmetoder och tekniker. Limma, spika, skruva, popnita, sy, löda, svetsa, smälta.
  • Dokumentera sin arbetsprocess och sin konstruktion med digitala verktyg i text, med bilder, ritningar, illustrationer, datorsimuleringar och film.
  • Utföra undersökningar och laborationer och dokumentera sina mätresultat i tabeller och labbrapporter.
  • Enkla maskiner.
  • Hållbara konstruktioner.

Sociala medier, mobil-användning och ”skärmtid”

Hur påverkar användandet av sociala medier dig, dina vänner och samhället i stort när det kommer till formandet av kultur, värderingar, beteenden, normer och hur vi mår?

https://www.resume.se/blogg/nils-andersson-wimby/2019/01/23/skarmtiden-och-behovet-av-en-balanserad-debatt/


Vad är ett sunt och bra användande av sociala medier, och vad kan vara problematiskt? Hur vet vi var gränsen går?
Är det rätt att förbjuda mobiltelefoner i skolan, som regeringen nu föreslår?
Forskningen är inte enig i dessa frågor och debatter gällande ”skärmtid” och sociala medier blir tyvärr ofta infekterade, polariserade, svart/vita och skuldbeläggande.

Det vi kan konstatera efter att tagit del av flera olika sidors argument är att det inte går att svara med säkerhet på dessa frågor. Hur bra eller dåligt ditt användande är för just dig beror helt enkelt på flera olika faktorer som t ex vem du är, hur du är som person, vad du gör, hur ofta, hur länge och i vilka situationer du använder sociala medier. Det spelar även stor roll hur ditt liv i övrigt ser ut.

Sociala medier har en stor och viktig roll i våra liv!

Här nedan är en simulerad visualisering som visar hur enormt mycket ny information som publiceras och delas på sociala medier just nu. Du kan scrolla ner för att se fler sociala medier än facebook som visas överst. (Genom att klicka på de tre punkterna till höger om tidsräknaren kan du välja önskat tidsintervall för sammanställningen).


Presented by Coupofy

Att helt stå utanför dessa globala nätverk av kommunikation och kollaboration vore helt otänkbart för de flesta av oss idag. De har helt enkelt blivit en naturlig och självklar del av våra dagliga liv, vår kultur och våra sociala beteenden. Att lära sig att agera, kommunicera och förhålla sig till reglerna, möjligheterna och begränsningarna inom dessa digitala sociala arenor och plattformar har kommit att bli väldigt viktiga kompetenser och förmågor som alla demokratiska samhällsmedborgare behöver ha och ständigt utveckla. Därför har Skolverket, på uppdrag av regeringen, reviderat och uppdaterat läroplaner och kursplaner för förskolan, grundskolan, särskolan och gymnasieskolan och infört obligatoriska delar i undervisningen i flera ämnen som syftar till att samtliga elever ska ges förutsättningar att utveckla adekvat digital kompetens. Vad detta innebär konkret i praktiken variera stort beroende på kontext, men det kan t ex vara en kritisk, reflekterande och medveten användning av sociala medier.

Följande reflektionsfrågor kan vara en bra utgångspunkt för en klassrumsdiskussion:

  • Vilka olika sociala medier använder du?
  • Hur mycket tid lägger du på de olika sociala medierna varje dag?
  • Vad anser du är lagom?
  • Vad gör du på sociala medier?
  • Vilka personer/konton följer du?
  • Vilka personer/konton följer dig?
  • Vad läser du, vad tittar du på och vad lyssnar du på?
  • Vilken typ av information lägger du själv upp och i vilka kanaler, för vilka målgrupper och av vilket syfte?
  • När, var och i vilka situationer använder du sociala medier mest?
  • Hur upplever du att du påverkas av det du och andra gör på sociala medier?
  • Hur skulle ditt liv förändras om du drastiskt minskade ditt användande av sociala medier, eller slutade helt?
  • Ge exempel på saker som är bra med sociala medier.
  • Ge exempel på saker som är dåliga eller problematiska med sociala medier.

I kalkylen nedan kan du göra olika beräkningar som visar hur mycket tid du lägger på olika saker och vilken effekt det får i förlängningen om du gör vissa förändringar i dina dagliga rutiner.
Använd kalkylen för att hjälpa dig att hitta en sund balans som passar dig och ditt liv och hjälper dig att nå dina mål.

Social Media Time Alternatives

Robotbyggsatser för att bygga en egen robot rover

Skapa en egen robot baserat på t ex en mBot wifi, Velleman Allbot Four Legged Robot, eller Pi2Go.

Det finns många olika byggsatser att köpa om du vill bygga en egen programmerbar robot eller en robotbil.
Ett chassi till ett fordon är en ram, stomme eller bottenplatta med tillhörande hjul, hjulupphängning och motorer. För att få önskad funktion på din robot behöver du komplettera chassit med motordrivkretsar, styrelektronik och strömförsörjning.
Det finns en hel del att ta hänsyn till när du ska välja vilka komponenter din robot ska bestå av. Enklast är att välja något som andra redan testat, så att du vet att delarna fungerar ihop och kan hitta instruktioner för hur man bygger ihop allt.

Här nedan visar vi ett antal exempel på byggsatser med chassi, motorer och hjul samt några lite mer kompletta lösningar där även alla elektronik-komponenter medföljer.
När du har ett färdigt chassi kan du designa och bygga en egen kaross eller hölje till det. Varför inte t ex göra så att det ser ut som ett djur?
Du kan givetvis även konstruera och bygga ett helt eget chassi som liknar något av dessa i valfritt material (t ex trä, plast, kartong eller metall). För att spara pengar och skona miljön kanske du kan hitta och använda något lämpligt återbruksmaterial? (Skolans läromedelsbudget är ju begränsad).
Du skulle kunna göra det som ett riktigt bra ämnesövergripande skolprojekt som handlar om hållbar utveckling, uppfinningar, konstruktion, design, elektronik, mekanik, ekonomi, kommunikation, samarbete, materialkunskap, verktyg och bearbetning, skisser och ritningar, 3D-CAD och 3D-printing och programmering. Inte bara för att det är väldigt lärorikt, utan även för att det är kreativt, utmanande och kul!
Skolämnen som berörs är i huvudsak teknik, bild och slöjd, men även matematik, fysik, samhällskunskap, hem- och konsumentkunskap, svenska, engelska och kemi.

Här är ett antal exempel på färdiga robot-kit:

Mini Robot Rover Chassis Kit

Mini Robot Rover Chassis Kit

Kit för att bygga en egen robot med två hjul. Innehåller chassi, motorer och hjul. Komplettera med motordrivning, en Arduino eller Micro:bit och strömförsörjning.
Innehåll: 2 DC-motorer (4-6 V) med hjul, stödhjul, metallchassi och topplatta för tillbehör. Mått monterad: 103x74x156 mm. Pris ca 250:- på Kjell & Co

Robotbyggsats med hjul och motor

Robotbyggsats med hjul och motor

Kit för att bygga en egen robot med två hjul. Innehåller chassi, motorer och hjul. Komplettera med motordrivning, en Arduino eller Micro:bit och strömförsörjning. Gör roboten smart med t.ex. optisk linjespårning (87064) eller avståndsmätning (87059). Chassit har hål för montering med skruv. Spänning motorer: 5 – 10 V.

  • Chassi, motorer och växellådor
  • Två drivhjul med stödhjul

Pris ca 300:- på Kjell & Co

Robo:Bit Buggy MK2

Robo:Bit Byggy MK2 ihopmonterad

En liten buggy som enkelt monteras med bara en skruvmejsel, ingen lödning krävs.

Innehåll
Robo:Bit robotik-kontroller (kretskort)
monteringsdetaljer (batterihållare, skruv, distanser, osv)
2 gula hjul med däck
2 motorer med anslutningskabel (ingen lödning)
notera att micro:bit inte ingår!

Med den här byggsatsen kan man lära sig om att:
Styra motorer med enkla fram/bak-kommandon.
Styra motorernas hastighet i båda riktningarna med PWM.
Med hjälp av en till micro:bit radiostyra buggyn.
Använda rörelsesensorn hos micro:bit för att detektera krockar med hinder och undvika dem.
Priset för detta kit är ca 480:- på Electrokit

Med en ultraljudsavståndsmätare (ingår ej) även:
Upptäcka hinder när de kommer nära och undvika dem
”följa John”-program som försöker hålla ett konstant avstånd till föremål

Med en linjeföljare (ingår ej) även:

Använda linjesensorerna för att få buggyn att hålla sig i ”spåret”
Skriva mer komplicerade program för när roboten stöter på korsningar av olika slag
Jämföra olika strategier för att följa linjer
Tillsammans med ultraljudsavståndsmätaren kan du få roboten att undvika hinder på banan och, efter att ha rundat den, upptäcka den igen.


Robo:Bit Buggy MK2 delar
Robo:Bit Buggy MK2 ihopmonterad inklusive ultraljudsdetektorer

Olimex Robotplattform 3 hjul

Olimex Robotplattform 3 hjul monterad

Olimex Robotplattform 3 hjul är en robotbyggsats med chassie, motorer, hjul och batterihållare. Chassiet består av en 3mm akrylplastskiva med en mängd fästpunkter för motorer, sensorer och övrig elektronik. Byggsatsen innehåller två utväxlade DC-motorer som skruvas fast i chassiet och två hjul med gummidäck som enkelt trycks fast direkt på motoraxlarna. Utöver de två drivhjulen medföljer även en stödkula som följer rörelser i alla riktningar samt en batterihållare för 4st AA-batterier. Komplettera med valfri mikrokontroller, motordrivare samt sensorer och du har en komplett autonom robot!

Motorspecifikationer:
* Spänning: 6VDC
* Ström: 240mA
* Hastighet: 230rpm
* Utväxling: 1:48
* Vridmoment: 0.078Nm (0.8kgf-cm)

Innehåll:
* 1st chassie
* 2st motorer
* 2st hjul 65 x 25mm
* 1st stödkula
* 2st monteringssatser för motor
* 1st batterihållare 4xAA
Pris för detta kit är ca 280:- på Electrokit

Olimex Robotplattform 3 hjul delar

AlphaBot2 – Robot kit för Raspberry Pi

AlphaBot2 – Robot kit för Raspberry Pi

AlphaBot2 är en robotbyggsats gjord för Raspberry Pi Zero/Zero W, och klarar bland annat av att följa en linje, undvika föremål, mäta avstånd med ultraljud, kommunicera över Bluetooth/IR/WiFi (Bluetooth och WiFi kräver Pi Zero W) och har en inbyggd kamera som gåra att vinkla i höjdled.
Monteringen är enkelt avklarad utan någon lödning eller kabeldragning; det är klart på några minuter och det finns gott om exempelkod för att komma igång snabbt.

Funktioner:
* 5-kanals infraröd sensor, med analog utgång och PID-algorithm för stabil linjeföljning
* Moduler för linjeföljning och för att undvika hinder, utan kabeldragning
* TB6612FNG dubbel H-brygga motordrivare
* N20 minimotor med metallkugghjul i växellådan.
* Inbyggda RGB LEDs

På det övre kortet finns:
* LM2596 spänningsregulator, levererar stabil ström (5V) till Raspberry Pi Zero
* TLC1543 10 bitars AD-omvandlare, för integration med analoga givare och sensorer
* PCA9685 servocontroller för jämn rörelse av kameraservot
* CP2102 UART-konverterare, för att styra Pi över UART
* USB HUB chip, så du kan använda fler USB-anslutningar (fyra stycken)
* En summer
* IR-mottagare

Mått: 220 x 165 x 70mm

Innehåll:
AlphaBot2-PiZero (adapterkort)
AlphaBot2-Base (chassi)
RPi Camera (B)
Ultraljudssensor
Micro SD kort 16GB
SG90 servo
2 DOF pan and tilt kit
IR fjärrkontroll
FC-20P kabel 8cm
Micro USB-kontakt
RPi Zero V1.3 Camerasladd 30cm
USB-kabel typ A hane till microB hane
AlphaBot2-PiZero skruvar
skruvmejsel
Pris ca 1200:- på Electrokit

Rover 5 Robotplattform

Rover 5 Robotplattform

Rover 5 är en robotplattform av modell stridsvagn (tank) och använder 4 individuellt oberoende motorer, var och en med en halleffekt-kvadraturkodare och växellåda. Hela växellådsaggregatet kan roteras i steg om 5 grader för olika markfrigångskonfigurationer. Du kan även byta ut robotens larvfötter mot traditionella hjul.

Funktioner:

Justerbara växellådsvinklar
4 oberoende likströmsmotorer
4 oberoende hall-effektkodare
Tjocka gummitankar
6x AA batterihållare
10 kg / cm stallmoment per motor
Pris ca 800:- på Elektrokit

mBot Blue/Wifi från Makeblock

mBot Blue från Makeblock

mBot Blue och mBot wifi från Makeblock är robotbyggsatser speciellt framtagna för barn och utbildning. Roboten monteras enkelt ihop, ingen lödning krävs, och programmeras i Arduino eller Scratch. En modul för 2.4GHz eller Bluetooth kommunikation medföljer och kan användas för att styra roboten trådlöst från en dator eller mobil. App för iPhone och Android finns gratis i Appstore och Google Play, sök efter namnet mBot. Det medföljer även en IR-fjärrkontroll som redan från start kan användas för att styra roboten manuellt.
Med i paketet finns alla mekaniska delar som behövs för att bygga ihop roboten, styrkort, hjul och motorer, ultraljudssensor, linjeföljarsensor, kablar, batterihållare, fjärrkontroll samt skruvmejslar.

mBot är en komplett lösning för elever som vill lära sig mer om programmering, elektronik och robotar. Att arbeta med mBlock, inspirerad av Scratch 2.0 och kontrollerad av en Bluetooth-modul ger detta robotkit elever en oändlig massa möjligheter att lära sig vetenskap, teknologi, ingenjörskunskap och matematk.

Dra och släpp grafiskt programmeringsmjukvara som baseras på Scratch 2.0 ger barnen ett snabbt sätt att lära sig programmering, att kontrollera roboten, och att möjliggöra multipla funktioner från roboten. mBot bygger på lek och kreativitet.

Den mekaniska aluminiumkroppen av mBot är kompatibel med Makeblock plattformen och många Legodelar, medan elektroniken är utvecklad med Arduinos open source ekosystem. Detta gör att mBot har en nästan oändlig utökningsmöjlighet genom att använda många olika elektroniska moduler som du kan behöva för att bygga din ”drömrobot”.

• Mjukvara och programmering: mBlock (Grafisk) för Mac och Windows, iPad mBlocky, Arduino IDE
• Microcontroller: Baserad på Arduino Uno
• Strömförsörjning: 3,7V DC Lithium batteri eller fyra 1,5V AA batterier (säljes separat)
• Trådlös kommunikation: Bluetooth eller 2,4 GHz wifi

I paketet ingår:2x Micro TT motor
1x Universal hjul
1x Me Ultraljud sensor
1x mCore
15x M4 x8 skruvar
1xME Line follower
2x Tyre 90T B
8x M3 muttrar
2x Velcro
4x M2.2 x 9.5 skruvar
1x Line follower map
4x M2 x 25
2x 6P6C RJ25-kablar 0,2m
1x IR fjärrkontroll (Knappcellsbatteri CR2025, medföljer ej)
1x Chassi
1x USB Typ A – Typ B kabel 1m
1x Batterihållare för 4 AA-batterier (batterier medföljer ej)
1x skruvmejsel
1x Skyddslock Mått(BxDxH): 170x130x90mm
Längd 17 cm
Fyra AA batterier köps separat
1 st knappcellsbatteri CR2025 köps separat 
Priser från ca 900:- beroende på modell och kan köpas från t ex Hands On Science
mBot Blue och mBot wifi kan programmeras med Scratch
mBot Blue från Makeblock i delar
mBot Wifi monteras enkelt ihop till en komplett fungerande robot
mBot Blue kan styrs från en mobiltelefon

mBot Ranger Robot kit från Makeblock

Produktbild
mBot Ranger Robot Kit från Makeblock

mbot Ranger Robot Kit är ett 3-i-1 robotkit som stöder tre byggutföranden: Off-Road Land Raider, två-hjulig självbalanserande bil och Dashing Raptor, Predator.

Programmera och kontrollera mbot Ranger via smartphone, surfplatta, Mac eller PC.
Trådlös komunikation via Bluetooth och WiFi 2,4G.

mBot Ranger är fullt kompatibel med mBlock som är en grafisk programmeringsmiljö baserad på Scratch 2.0 open-source kod. Den gör programmeringsprojekt och interaktiva projekt enklare genom drag-and-drop funktionsblock. Utöver stöd för programmering via en PC har mBot Ranger även stöd för att bli programmerad från en iPad och andra surfplattor med en enkelanvänd app: Makeblock HD.

Programmering:
PC – mBlock
iPad/Tablet – Makeblock
Arduino IDE 

Datorkort:
Arduino Mega 2560, 256 KB flash memory, 8 KB SRAM, 4KB EEPROM 

Sensorer:
2 ljussensorer
1 ljudsensor
1 gyroskop
1 temperatursensor
1 ultraljudssensor
1 linjeföljare

Ljudenhet:
1 Summer 

Motor: 2×400 RPM Encoder Motor

Storlek: 200x165x120 mm
Vikt: 1600 gram 

Drivs med 6 stycken AA batterier (ingår ej, köpes separat).
Pris ca 1500:- och kan köpas från t ex Hands On Science

Kolla in vad man kan göra med mBot Ranger Robot Kit

Läs mer om mBot Ranger på www.makeblock.com 

Bil med remdrift

Produktbild
Bilchassi med elmotor och remdrift

Bil med kraftöverföring via remdrift i serien Bilar och kraftöverföring.

Byggsatsen innehåller chassi av korrugerad plast, hjul, axlar och axelbockar med monteringskuddar, 2 remskivor, gummiband, elmotor, batterihållare och omkopplare.

Storlek 20x14cm. 
Batteri 2 st AA beställs separat.
Pris ca 80:- på Hands On Science

Enkla byggsatser där ni jämför effekten av olika kraftöverföringar från energikälla till rörelseenergi. Här är utväxling gjord med remskivor av olika diameter.

Remdrivning i fordon finns i lite olika varianter. I riktiga personbilar används det mest till att driva generatorn, vattenpumpen, AC-kompressorn, kylarfläkten eller servostyrningspumpen från bilens förbränningsmotor. Det finns dock några klassiska gamla exempel på bilar som hade remdrivning som kraftöverföring för att driva hjulen som t ex Daf/Volvo 343, även kallad Remjohan.
Vissa veteranmopeder hade kraftöverföring med en rem för länge sedan, men sedan blev det i princip standard med kedja på både mopeder och motorcyklar. Idag har remdrift blivit vanligare igen på Scooter-mopeder bl a pga ryckfri och behaglig gång samt möjlighet att justera utväxlingen dynamiskt i den automatiska växellådan mha en variator.
Andra remdrivna produkter är kvarnar, luftkompressorer och kapsågar.

Bilchassi med kugghjulsdrift

Bilchassi med kugghjulsdrift som kraftöverföring

Byggsatsen innehåller chassi av korrugerad plast, hjul, axlar och axelbockar med monteringskuddar, 2 kugghjul, elmotor, batterihållare och omkopplare.

Storlek 20x14cm. 
Batteri 2 st AA beställs separat.
Pris ca 80:- på Hands On Science

Enkla byggsatser där ni jämför effekten av olika kraftöverföringar från energikälla till rörelseenergi. 
Mellan drivkälla och hjul finns i allmänhet en växellåda med flera kugghjul.

Kugghjulsdrivna fordon är våra vanliga standardbilar, lastbilar och mopeder, cyklar traktorer samt även i borrmaskiner.

IKT-Labbet Makerspace@school

Sedan 2012 har IKT-Labbets mobila makerspace låtit skolor, lärare och elever testa och utvärdera IKT-verktyg, datorer, programmerbara robotar, digitala läromedel, 3D-skrivare, radiostyrda helikoptrar och drönare, Virtual Reality, Augmented Reality, Mixed Reality och elektronik i undervisningen, kostnadsfritt utan krav på att köpa.
Detta för att möjliggöra seriösa förstudier, lesson studies, aktionsforskning och framtagande av evidensbaserade beslutsunderlag i skolutvecklingsprojekt, inför upphandlingar och för att förbättra undervisningen inom teknik, fysik, biologi, kemi, bild, slöjd och matematik (STEAM).
IKT-Labbet har sedan starten varit ett ideellt non profit-initiativ som drivits och finansierats av Niclas Ekholm (@iktlabbet på sociala medier).

Tillsammans med kompetenta pedagoger från grundskolor, gymnasium och högskolor, och representanter från industri, näringslivet och akademin, har vi konkretiserat begreppet adekvat digital kompetens och utvecklat, testat och utvärderat mängder av lektionsupplägg i allt från traditionella till dynamiska och flexibla lärmiljöer där en naturlig kombination av fysiska artefakter och digitala verktyg förstärker lärprocessen.

Med ett makerspace i skolan tillåts elever nyfiket testa, utforska, upptäcka, uppleva, skapa och lära med hjälp av 3D-skrivare, programmerbara robotar, Raspberry Pi, Arduino, elektronik, radiostyrda drönare m.m.

Denna blogg och hemsida har inte varit speciellt aktiv eftersom  information om IKT-Labbet och dokumentation i form av tusentals bilder, filmklipp, kommentarer från klassbesök, tips, idéer och lektionsförslag gällande makerspace i skolan istället publicerats via andra kanaler som t ex Twitter (@iktlabbet), Instagram (@iktlabbet), Facebook, i diverse tidningsartiklar, och i huvudsak i skolornas och klassernas egna system.
Under 2019 kommer dock hemsidan uppdateras en del med vissa lektionsplaneringar som kan vara av intresse för andra lärare.

Twitter: @iktlabbet
Instagram: @iktlabbet
Facebook: https://www.facebook.com/niclas.ekholm
Makerspace i skolan: http://makerskola.se/
Digitalverkstan: http://www.digitalverkstan.com/
Finn Upp: https://www.finnupp.se/